Chapter 2 continued

4. Two trains simultaneously leave the same train station at noon. One train travels north and the other travels south. The position-time graph for both trains is shown in the accompanying figure.

North
a. What is the position of the train traveling north at 6.0 h ? 600.0 km
b. What is the position of the train traveling south at 6.0 h ?
300.0 km
c. What is the distance between the trains at 6.0 h ? What is the distance at 10.0 h ?
900.0 km, 1500.0 km
d. At what time are the trains 600.0 km apart?
4.0 h
e. Which train is moving more quickly? northbound train
5. Two cars head out in the same direction. Car A starts 1.0 min before car B. The position-time graphs for both cars are shown in the accompanying figure.

a. How far apart are the two cars when car B starts out at $t=1.0 \mathrm{~min}$?

0.75 km

b. At what time do the cars meet?

2.0 min

c. How far apart are the cars at time $t=3.0 \mathrm{~min}$?

0.75 km

6. The position-time graph for two joggers, A and B, is shown in the accompanying figure.

a. How far apart are the two runners at 10.0 min ?

1.50 km

b. At what time are they 1.00 km apart?

20.0 min

c. How far apart are they at 50.0 min ?

0.50 km

d. At what time do they meet?
40.0 min

Chapter 2 continued

e. What distance does jogger B cover between 30.0 min and 50.0 min ? 0.00 km
f. What distance does jogger A cover between 30.0 min and 50.0 min ? 1.00 km
7. A child's toy train moves at a constant speed of $2.0 \mathrm{~cm} / \mathrm{s}$.
a. Draw the position-time graph showing
the position of the toy for 1.0 min .

b. What is the slope of the line representing the motion of the toy?

$$
\begin{aligned}
\text { slope }= & \frac{\text { rise }}{\text { run }}=\frac{120 \mathrm{~cm}}{60 \mathrm{~s}} \\
= & 2.0 \mathrm{~cm} / \mathrm{s}, \text { the same as the } \\
& \text { train's speed }
\end{aligned}
$$

8. The position of an airplane as a function of time is shown in the figure below.

a. What is the average velocity of the airplane?
velocity = slope of line

$$
\begin{aligned}
& =\frac{-800.0 \mathrm{~km}-0.0 \mathrm{~km}}{5.0 \mathrm{~h}-1.0 \mathrm{~h}} \\
& =-2.0 \times 10^{2} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

b. What is the average speed of the airplane?

$$
\begin{aligned}
\text { speed } & =\text { absolute value of the velocity } \\
& =2.0 \times 10^{2} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

9. The position-time graph for a hot-air balloon that is in flight is shown in the accompanying figure.

a. What is the average velocity of the balloon?

$$
\begin{aligned}
\text { velocity } & =\text { slope } \\
& =\frac{0.00 \mathrm{~km}-(-40.0 \mathrm{~km})}{5.0 \mathrm{~h}-0.0 \mathrm{~h}} \\
& =8.0 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

b. What is the average speed of the balloon?

$$
\begin{aligned}
\text { speed } & =\text { absolute value of slope } \\
& =8.0 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Chapter 3

pages 861-862

1. Jason and his sister, Tara, are riding bicycles. Jason tries to catch up to Tara, who has a $10.0-\mathrm{s}$ head start.

a. What is Jason's acceleration?

$$
\begin{aligned}
a_{\mathrm{J}} & =\frac{8.0 \mathrm{~m} / \mathrm{s}-0.0 \mathrm{~m} / \mathrm{s}}{30.0 \mathrm{~s}-10.0 \mathrm{~s}} \\
& =0.40 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b. What is Tara's acceleration?

$$
\begin{aligned}
a_{\mathrm{T}} & =\frac{8.0 \mathrm{~m} / \mathrm{s}-0.0 \mathrm{~m} / \mathrm{s}}{40.0 \mathrm{~s}-0.0 \mathrm{~s}} \\
& =0.20 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

c. At what time do they have the same velocity?

20.0 s

2. A dragster starts from rest and accelerates for 4.0 s at a rate of $5.0 \mathrm{~m} / \mathrm{s}^{2}$. It then travels at a constant speed for 2.5 s . A parachute opens, stopping the vehicle at a constant rate in 2.0 s . Plot the v - t graph representing the entire motion of the dragster.

3. A car traveling at $21 \mathrm{~m} / \mathrm{s}$ misses the turnoff on the road and collides into the safety guard rail. The car comes to a complete stop in 0.55 s .
a. What is the average acceleration of the car?

$$
\begin{aligned}
\bar{a} & =\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t_{\mathrm{f}}-t_{\mathrm{i}}}=\frac{0.00 \mathrm{~m} / \mathrm{s}-21 \mathrm{~m} / \mathrm{s}}{0.55 \mathrm{~s}} \\
& =-38 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b. If the safety rail consisted of a section of rigid rail, the car would stop in 0.15 s . What would be the acceleration in this case?

$$
\begin{aligned}
\bar{a} & =\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t_{\mathrm{f}}-t_{\mathrm{i}}}=\frac{0.00 \mathrm{~m} / \mathrm{s}-21 \mathrm{~m} / \mathrm{s}}{0.15 \mathrm{~s}} \\
& =-1.4 \times 10^{2} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

4. On the way to school, Jamal realizes that he left his physics homework at home. His car was initially heading north at $24.0 \mathrm{~m} / \mathrm{s}$. It takes him 35.5 s to turn his car around and head south at $15.0 \mathrm{~m} / \mathrm{s}$. If north is designated to be the positive direction, what is the average acceleration of the car during this $35.5-\mathrm{s}$ interval?

$$
\begin{aligned}
\bar{a} & =\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t_{\mathrm{f}}-t_{\mathrm{i}}}=\frac{-15.0 \mathrm{~m} / \mathrm{s}-24.0 \mathrm{~m} / \mathrm{s}}{35.5 \mathrm{~s}} \\
& =1.10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

5. A cheetah can reach a top speed of $27.8 \mathrm{~m} / \mathrm{s}$ in 5.2 s . What is the cheetah's average acceleration?

$$
\begin{aligned}
\bar{a} & =\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t_{\mathrm{f}}-t_{\mathrm{i}}}=\frac{27.8 \mathrm{~m} / \mathrm{s}-0.0 \mathrm{~m} / \mathrm{s}}{5.2 \mathrm{~s}} \\
& =5.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

6. After being launched, a rocket attains a speed of $122 \mathrm{~m} / \mathrm{s}$ before the fuel in the motor is completely used. If you assume that the acceleration of the rocket is constant at $32.2 \mathrm{~m} / \mathrm{s}^{2}$, how much time does it take for the fuel to be completely consumed?
$\bar{a}=\frac{\Delta v}{\Delta t}$
$\Delta t=\frac{\Delta v}{\bar{a}}=\frac{122 \mathrm{~m} / \mathrm{s}-0.00 \mathrm{~m} / \mathrm{s}}{32.2 \mathrm{~m} / \mathrm{s}^{2}}=3.79 \mathrm{~s}$

Chapter 3 continued

7. An object in free fall has an acceleration of $9.80 \mathrm{~m} / \mathrm{s}^{2}$ assuming that there is no air resistance. What is the speed of an object dropped from the top of a tall cliff 3.50 s after it has been released, if you assume the effect of air resistance against the object is negligible?
$\bar{a}=\frac{\Delta v}{\Delta t}$

$$
\begin{aligned}
\Delta v & =\bar{a} \Delta t=g \Delta t=\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(3.50 \mathrm{~s}) \\
& =34.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

8. A train moving with a velocity of $51 \mathrm{~m} / \mathrm{s}$ east undergoes an acceleration of $-2.3 \mathrm{~m} / \mathrm{s}^{2}$ as it approaches a town. What is the velocity of the train 5.2 s after it has begun to decelerate?

$$
\begin{aligned}
\bar{a} & =\frac{\Delta v}{\Delta t}=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{\Delta t} \\
v_{\mathrm{f}} & =\bar{a} \Delta t+v_{\mathrm{i}} \\
& =\left(-2.3 \mathrm{~m} / \mathrm{s}^{2}\right)(5.2 \mathrm{~s})+51 \mathrm{~m} / \mathrm{s} \\
& =39 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

9. The v-t graph of a runner is shown in the accompanying figure.

The displacement is the area under the graph.
a. What is the displacement of the runner between $t=0.00 \mathrm{~s}$ and $t=20.0 \mathrm{~s}$?

$$
\begin{aligned}
\Delta d & =\left(\frac{1}{2}\right)(8.0 \mathrm{~m} / \mathrm{s})(20.0 \mathrm{~s}) \\
& =8.0 \times 10^{1} \mathrm{~m}
\end{aligned}
$$

b. What is the displacement of the runner between $t=20.0 \mathrm{~s}$ and $t=50.0 \mathrm{~s}$?

$$
\begin{aligned}
\Delta d & =(8.0 \mathrm{~m} / \mathrm{s})(50.0 \mathrm{~s}-20.0 \mathrm{~s}) \\
& =240 \mathrm{~m}
\end{aligned}
$$

c. What is the displacement of the runner between $t=50.0 \mathrm{~s}$ and $t=60.0 \mathrm{~s}$?

$$
\begin{aligned}
\Delta d & =\left(\frac{1}{2}\right)(8.0 \mathrm{~m} / \mathrm{s})(60.0 \mathrm{~s}-50.0 \mathrm{~s}) \\
& =4.0 \times 10^{1} \mathrm{~m}
\end{aligned}
$$

10. Draw the v-t graph of an automobile that accelerates uniformly from rest at $t=0.00 \mathrm{~s}$ and covers a distance of 180.0 m in 12.0 s .
Since the car accelerates uniformly, the v - t graph is a straight line. Starting from the origin, the area is triangular.
Thus, $\Delta d=\frac{1}{2} v_{\text {max }} \Delta t$
$v_{\max }=\frac{2 \Delta d}{\Delta t}=\frac{(2)(180.0 \mathrm{~m})}{12.0 \mathrm{~s}}=30.0 \mathrm{~m} / \mathrm{s}$

11. The v-t graph of a car is shown in the accompanying figure. What is the displacement of the car from $t=0.00 \mathrm{~s}$ to $t=15.0 \mathrm{~s}$?

displacement $=$ area under $v-t$ graph
The total displacement is the sum of the displacements from 0.00 s to 4.00 s , 4.00 s to $6.00 \mathrm{~s}, 6.00 \mathrm{~s}$ to $8.00 \mathrm{~s}, 8.00 \mathrm{~s}$ to 10.0 s , and 10.0 s to 15.0 s :

Chapter 3 continued

$$
\begin{aligned}
\Delta d_{\text {total }}= & \Delta d_{1}+\Delta d_{2}+\Delta d_{3}+\Delta d_{4}+\Delta d_{5} \\
= & \left(\frac{1}{2}\right)(30.0 \mathrm{~m} / \mathrm{s})(4.00 \mathrm{~s})+ \\
& (30.0 \mathrm{~m} / \mathrm{s})(2.00 \mathrm{~s})+ \\
& \left(\frac{1}{2}\right)(30.0 \mathrm{~m} / \mathrm{s})(2.00 \mathrm{~s})+ \\
& \left(\frac{1}{2}\right)(-30.0 \mathrm{~m} / \mathrm{s})(2.00 \mathrm{~s})+ \\
= & -30.0 \mathrm{~m}
\end{aligned}
$$

12. Suppose a car rolls down a $52.0-\mathrm{m}$-long inclined parking lot and is stopped by a fence. If it took the car 11.25 s to roll down the hill, what was the acceleration of the car before striking the fence?
$d_{\mathrm{f}}=d_{\mathrm{i}}+v_{\mathrm{i}} t_{\mathrm{f}}+\frac{1}{2} a t_{\mathrm{f}}{ }^{2}$
$v_{i}=0.00 \mathrm{~m} / \mathrm{s}$ since the car starts from rest
$a=\frac{2\left(d_{\mathrm{f}}-d_{\mathrm{i}}\right)}{\mathrm{t}_{\mathrm{f}}^{2}}=\frac{(2)(52.0 \mathrm{~m})}{(11.25 \mathrm{~s})^{2}}=0.823 \mathrm{~m} / \mathrm{s}^{2}$
13. A sky diver in free fall reaches a speed of $65.2 \mathrm{~m} / \mathrm{s}$ when she opens her parachute. The parachute quickly slows her down to $7.30 \mathrm{~m} / \mathrm{s}$ at a constant rate of $29.4 \mathrm{~m} / \mathrm{s}^{2}$. During this period of acceleration, how far does she fall?

$$
\begin{aligned}
& v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a\left(d_{\mathrm{f}}-d_{\mathrm{i}}\right) \\
& \begin{aligned}
d_{\mathrm{f}}-d_{\mathrm{i}} & =\frac{v_{\mathrm{f}}^{2}-v_{\mathrm{i}}^{2}}{2 a} \\
& =\frac{(-7.30 \mathrm{~m} / \mathrm{s})^{2}-(-65.2 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(29.4 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =-71.4 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

She has fallen 71.4 m during the acceleration period.
14. A child rolls a ball up a hill at $3.24 \mathrm{~m} / \mathrm{s}$. If the ball experiences an acceleration of $2.32 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the ball to have a velocity of $1.23 \mathrm{~m} / \mathrm{s}$ down the hill?
Let the positive direction be up the hill.

$$
v_{f}=v_{i}+a t_{f}
$$

$$
\begin{aligned}
t_{\mathrm{f}} & =\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{a}=\frac{-1.23 \mathrm{~m} / \mathrm{s}-3.24 \mathrm{~m} / \mathrm{s}}{-2.32 \mathrm{~m} / \mathrm{s}^{2}} \\
& =1.93 \mathrm{~s}
\end{aligned}
$$

15. A cheetah can accelerate from rest to a speed of $27.8 \mathrm{~m} / \mathrm{s}$ in 5.20 s . The cheetah can maintain this speed for 9.70 s before it quickly runs out of energy and stops. What distance does the cheetah cover during this 14.9 -s run?

During the acceleration period:

$v_{\mathrm{f}}=v_{\mathrm{i}}+a t_{\mathrm{f}}$
$a=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{t_{\mathrm{f}}}=\frac{27.8 \mathrm{~m} / \mathrm{s}-0.00 \mathrm{~m} / \mathrm{s}}{5.20 \mathrm{~s}}$

$$
=5.35 \mathrm{~m} / \mathrm{s}^{2}
$$

With this acceleration the distance during acceleration can be determined.

$$
\begin{aligned}
& v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 a\left(d_{\mathrm{f}}-d_{\mathrm{i}}\right) \\
& d_{\mathrm{f}}-d_{\mathrm{i}}
\end{aligned}=\frac{v_{\mathrm{f}}^{2}-v_{\mathrm{i}}^{2}}{2 a} .
$$

During the constant speed period, $a=0.00 \mathrm{~m} / \mathrm{s}^{2}$.

$$
\begin{aligned}
d & =v t=(27.8 \mathrm{~m} / \mathrm{s})(9.70 \mathrm{~s}) \\
& =2.70 \times 10^{2} \mathrm{~m}
\end{aligned}
$$

The total distance is then the sum of the two.

$$
\begin{aligned}
\text { distance } & =2.70 \times 10^{2} \mathrm{~m}+72.3 \mathrm{~m} \\
& =342 \mathrm{~m}
\end{aligned}
$$

16. A cab driver in a hurry is sitting at a red light. When the light turns green she rapidly accelerates for 3.50 s at $6.80 \mathrm{~m} / \mathrm{s}^{2}$. The next light is still red. She then slams on the brakes, accelerating at a rate of $-9.60 \mathrm{~m} / \mathrm{s}^{2}$ before coming to rest at the stop light. What was her total distance for this trip?
During the first part of the trip,
$d_{f}=d_{i}+v_{i} t_{f}+\frac{1}{2} a t_{f}^{2}$

$$
\begin{aligned}
d_{f}-d_{\mathrm{i}} & =\frac{1}{2} a t_{\mathrm{f}}^{2}=\left(\frac{1}{2}\right)\left(6.80 \mathrm{~m} / \mathrm{s}^{2}\right)(3.50 \mathrm{~s})^{2} \\
& =41.6 \mathrm{~m}
\end{aligned}
$$

