Practice Kinematics Questions

(Answers are at the end)

1) One possible unit of speed is \qquad .
A) light years per century.
C) miles per hour.
E) none of the above.
B) kilometers per hour.
D) all of the above.
2) When you look at the speedometer in a moving car, you can see the car's
A) average acceleration.
C) average distance
E) average speed.
B) instantaneous
traveled.
acceleration.
D) instantaneous speed.
3) Acceleration is defined as the CHANGE in \qquad .
A) velocity divided by the time interval.
C) velocity of an object.
D) time it takes to move from
E) distance divided by the B) time it takes to move from one place to another place. time interval. one speed to another speed.
4) Suppose you are in a car that is going around a curve. The speedometer reads a constant 30 miles per hour. Which of the following is NOT true?
A) Your velocity is constant.
C) Your speed is constant.
E) Your direction is
B) Your acceleration is
D) You and the car are constantly changin constant. accelerating.
5) An object travels 8 meters in the first second of travel, 8 meters again during the second second of travel, and 8 meters again during the third second. Its acceleration is \qquad .
A) $8 \mathrm{~m} / \mathrm{s}$ to power of (2).
C) $16 \mathrm{~m} / \mathrm{s}$ to power of (2).
E) none of the above
B) $0 \mathrm{~m} / \mathrm{s}$ to power of (2).
D) $32 \mathrm{~m} / \mathrm{s}$ to power of (2).
6) Ten seconds after starting from rest, a car is moving at $40 \mathrm{~m} / \mathrm{s}$. What is the car's average acceleration?
A) $2.5 \mathrm{~m} / \mathrm{s}$ to power of (2)
B) $4.0 \mathrm{~m} / \mathrm{s}$ to power of (2)
C) $40 \mathrm{~m} / \mathrm{s}$ to power of (2)
D) $10 \mathrm{~m} / \mathrm{s}$ to power of (2)
E) $0.25 \mathrm{~m} / \mathrm{s}$ to power of (2)
7) As an object falls freely in a vacuum, its \qquad .
A) velocity increases.
B) acceleration increases.
C) both A and B
D) none of the above
8) In the absence of air resistance, objects fall at constant \qquad .
A) distances each successive second.
B) acceleration.
C) speed.
D) velocity.
E) all of the above
9) Speed is \qquad .
A) a measure of how fast something is moving.
B) always measured in terms of a unit of distance divided by a unit of time.
C) the distance covered per unit time.
D) all of the above. E) none of the above.
10) A ball is thrown upwards and caught when it comes back down. In the absence of air resistance, the speed of the ball when caught would be \qquad -.
A) less than the speed it had when thrown upwards.
B) more than the speed it had when thrown upwards.
C) the same as the speed it had when thrown upwards.
11) Suppose an object is in free fall. Each second the object falls \qquad .
A) a larger distance than in the second before.
B) with the same average speed.
C) with the same instantaneous speed.
D) the same distance as in the second before.
E) none of the above
12) If you drop a feather and a coin at the same time in a tube filled with air, which will reach the bottom of the tube first?
A) Neither-they will both reach the bottom at the same time.
B) The coin
C) The feather
13) Consider drops of water leaking from a water faucet. As the drops fall they \qquad .
A) remain at a relatively fixed distance from each other.
B) get closer together.
C) get farther apart.
14) A ball tossed vertically upward rises, reaches its highest point, and then falls back to its starting point. During this time the acceleration of the ball is always \qquad .
A) directed downward.
B) directed upward.
C) in the direction of motion.
D) opposite its velocity.
15) The hang time (time one's feet are off the ground in a jump) for most athletes is:
A) slightly more than 1 second.
C) about 1 second.
B) less than 1 second.
D) considerably more than 1 second.
16) When a basketball player jumps to make a shot, once the feet are off the floor, the jumper's acceleration \qquad .
A) is usually greater for taller players (but not
C) depends on launch speed. always).
D) depends on all the above.
B) varies with body orientation.
E) is g ; no more, no less.
17) Suppose you take a trip that covers 240 km and takes 4 hours to make. Your average speed is \qquad _.
A) $120 \mathrm{~km} / \mathrm{h}$.
B) $960 \mathrm{~km} / \mathrm{h}$.
C) $60 \mathrm{~km} / \mathrm{h}$.
D) $480 \mathrm{~km} / \mathrm{h}$.
E) $240 \mathrm{~km} / \mathrm{h}$.
18) Suppose a car is moving in a straight line and steadily increases its speed. It moves from 35 km / h to $40 \mathrm{~km} / \mathrm{h}$ the first second and from $40 \mathrm{~km} / \mathrm{h}$ to $45 \mathrm{~km} / \mathrm{h}$ the next second. What is the car's acceleration?
A) $10 \mathrm{~km} / \mathrm{s}^{2}$
B) $40 \mathrm{~km} / \mathrm{s}^{2}$
C) $5 \mathrm{~km} / \mathrm{s}^{2}$
D) $45 \mathrm{~km} / \mathrm{s}^{2}$
E) $35 \mathrm{~km} / \mathrm{m}^{2}$
19) A ball is thrown straight up. At the top of its path its instantaneous speed is \qquad .
A) $0 \mathrm{~m} / \mathrm{s}$.
C) about $10 \mathrm{~m} / \mathrm{s}$.
E) about $5 \mathrm{~m} / \mathrm{s}$.
B) about $50 \mathrm{~m} / \mathrm{s}$.
D) about $20 \mathrm{~m} / \mathrm{s}$.
20) A ball is thrown straight up. At the top of its path its acceleration is \qquad .
A) about $5 \mathrm{~m} / \mathrm{s}^{2}$
C) about $10 \mathrm{~m} / \mathrm{s}^{2}$
E) about $-5 \mathrm{~m} / \mathrm{s}^{2}$
B) about $-10 \mathrm{~m} / \mathrm{s}^{2}$
D) $0 \mathrm{~m} / \mathrm{s}^{2}$
21) When something falls to the ground, it accelerates. This acceleration is called the acceleration due to gravity and is symbolized by the letter g . What is the value of g on the earth's surface?
A) about $-5 \mathrm{~m} / \mathrm{s}^{2}$
C) about $5 \mathrm{~m} / \mathrm{s}^{2}$
E) $0 \mathrm{~m} / \mathrm{s}^{2}$
B) about $-10 \mathrm{~m} / \mathrm{s}^{2}$
D) about $10 \mathrm{~m} / \mathrm{s}^{2}$
22) A car accelerates at $2 \mathrm{~m} / \mathrm{s}$ to power of (2). Assuming the car starts from rest, how much time does it need to accelerate to a speed of $30 \mathrm{~m} / \mathrm{s}$?
A) 15 seconds
C) 30 seconds
E) none of the above
B) 2 seconds
D) 60 seconds
23) If a freely falling object were somehow equipped with a speedometer, its speed reading would increase each second by \qquad .
A) about $15 \mathrm{~m} / \mathrm{s}$.
C) about $10 \mathrm{~m} / \mathrm{s}$.
B) a rate that depends on its
D) about $5 \mathrm{~m} / \mathrm{s}$. initial speed.
E) a variable amount.
24) If an object were equipped with a speedometer and allowed to fall freely on a planet where the acceleration due to gravity is $20 \mathrm{~m} / \mathrm{s}$ to power of (2), the reading on the speedometer increases each second by \qquad -.
A) $40 \mathrm{~m} / \mathrm{s}$.
B) a rate that depends on its initial speed.
C) $10 \mathrm{~m} / \mathrm{s}$.
D) $30 \mathrm{~m} / \mathrm{s}$.
E) $20 \mathrm{~m} / \mathrm{s}$.
25) Ten seconds after starting from rest, a freely falling object will have a speed of about \qquad .
A) $100 \mathrm{~m} / \mathrm{s}$.
C) more than $500 \mathrm{~m} / \mathrm{s}$.
E) $10 \mathrm{~m} / \mathrm{s}$.
B) $500 \mathrm{~m} / \mathrm{s}$
D) $50 \mathrm{~m} / \mathrm{s}$.
26) One-half second after starting from rest, a freely falling object will have a speed of about :
A) $20 \mathrm{~m} / \mathrm{s}$.
C) $10 \mathrm{~m} / \mathrm{s}$.
E) none of the above
B) $2.5 \mathrm{~m} / \mathrm{s}$.
D) $5 \mathrm{~m} / \mathrm{s}$.
27) If you drop a feather and a coin at the same time in a vacuum tube, which will reach the bottom of the tube first?
A) The feather
B) The coin C) Neither-they will both reach the bottom at the same time.
28) If a projectile is fired straight up at a speed of $10 \mathrm{~m} / \mathrm{s}$, the total time to return to its starting point is about \qquad -
A) 20 seconds.
C) 10 seconds.
B) not enough information to
D) 2 seconds. estimate
E) 1 second.
29) The vertical height attained by a basketball player who achieves a hang time of a full 1 second is about \qquad -.
A) 0.8 m .
C) 2.5 m .
E) 1.2 m .
B) more than 2.5 m .
D) 1 m .
30) Suppose a jumper claims a hang time of 2 seconds. Then that jumper must be able to jump a vertical distance of \qquad .
A) 5 m .
B) 2 m .
C) 4 m .
D) 1
m. E) 3 m .

Answer the following questions in the space provided. Show all work.
31) What is the average speed of a cheetah that runs 65 m in 3.0 seconds?
32) A bicycle travels 15 km in 30 minutes. What is its average speed?
33) What is the average acceleration of a car that goes from rest to $59 \mathrm{~km} / \mathrm{h}$ in 9.0 seconds?
34) A jet on an aircraft carrier can be launched from 0 to $50 \mathrm{~m} / \mathrm{s}$ in 2.0 seconds. What is the acceleration of the jet?
35) A skateboarder starting from rest accelerates down a ramp at $4.0 \mathrm{~m} / \mathrm{s}^{2}$
for 4.0 s . What is the final speed of the skateboarder?
36) An apple falls from a tree and 0.5 second later hits the ground. How fast is the apple falling when it hits the ground?
37) What speed must you toss a ball straight up so that it takes 4.0 s to return to you?
38) You toss a ball at $30.0 \mathrm{~m} / \mathrm{s}$ straight upward. How much time will the ball take to reach the top of its path?
39) What is the hang time of a person who can jump a vertical distance of 0.80 m ?
40) What vertical distance can a person with a 0.8 -s hang time jump?
41) How much time does a car with an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$ take to go from $10 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$?
42) Starting from rest, a car undergoes a constant acceleration of $6.0 \mathrm{~m} / \mathrm{s}^{2}$. How far will the car travel in the first second?
43) A crate falls from an airplane flying horizontally at an altitude of $2,000 \mathrm{~m}$. Neglecting air drag, how long will the crate take to strike the ground?
44) If a projectile fired beneath the water, straight up, breaks through the surface at a speed of $16 \mathrm{~m} / \mathrm{s}$, to what height above the water will it ascend?
45) A stone is dropped from a cliff. After it has fallen 40 m , what is the stone's velocity?

1) Answer: D
2) Answer: B
3) Answer: D
4) Answer: A
5) Answer: A
6) Answer: B
7) Answer: A
8) Answer: D
9) Answer: B
10) Answer: C
11) Answer: A
12) Answer: B
13) Answer: C
14) Answer: A
15) Answer: B
16) Answer: E
17) Answer: C
18) Answer: C
19) Answer: A
20) Answer: B
21) Answer: B
22) Answer: A
23) Answer: C
24) Answer: E
25) Answer: A
26) Answer: D
27) Answer: C
28) Answer: D
29) Answer: E
30) Answer: A
31) Answer: 22 m/s
32) Answer: 30 km/hr
33) Answer: 6.6 km $/ \mathrm{s}^{2}$
34) Answer: $25 \mathrm{~m} / \mathrm{s}^{2}$
35) Answer: $16 \mathrm{~m} / \mathrm{s}$
36) Answer: $5 \mathrm{~m} / \mathrm{s}$
37) Answer: $20 \mathrm{~m} / \mathrm{s}$
38) Answer: 3.00 s
39) Answer: 0.80 s
40) Answer: 0.8 m
41) Answer: 5.0 s
42) Answer: 3.0 m
43) Answer: 20.0 s
44) Answer: 12.8 m
45) Answer: $28 \mathrm{~m} / \mathrm{s}$
